Markscheme

November 2015

Chemistry

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Subject Details: Chemistry HL Paper 2 Markscheme

Mark Allocation

Candidates are required to answer ALL questions in Section A [40 marks] and TWO question in Section B [2 x 25 marks]. Maximum total = [90 marks].

1. A markscheme often has more marking points than the total allows. This is intentional.
2. Each marking point has a separate line and the end is shown by means of a semicolon (;).
3. An alternative answer or wording is indicated in the markscheme by a slash (/). Either wording can be accepted.
4. Words in brackets () in the markscheme are not necessary to gain the mark.
5. Words that are underlined are essential for the mark.
6. The order of marking points does not have to be as in the markscheme, unless stated otherwise.

Section A

1. (a) (i) IO_{3}^{-}to $I_{2}: \mathrm{V} /+5$ to 0 ;
I^{-}to I_{2} : -I/-1 to 0;
Accept change in oxidation number -5 and +1 .
Penalize incorrect notation such as 5+ or 5 once only.
(ii) Oxidizing agent: IO_{3}^{-}/iodate and Reducing agent: I^{-}/iodide;
(b) $0.250 \times 2.00 \times 10^{-3} / 5.00 \times 10^{-4}\left(\mathrm{~mol}\right.$ of $\left.\mathrm{KIO}_{3}\right)$;
$\left(5.00 \times 10^{-4} \times 214.00=\right) 0.107(\mathrm{~g})$;
Award [2] for the correct final answer.
(c) (i) 1.4 (\%);

Accept 1 (\%).
(ii) systematic;
dilute the orange juice;
Accept other valid suggestions, eg. compare with a standard (showing colour at equivalence) / look at mixture through a yellow filter / add more starch (for a sharper colour change) / filter orange juice (through charcoal). Do not accept repeat titrations or alternative indicator.
(iii) $1.44 \times 10^{-5}(\mathrm{~mol})$;
(d) $\mathrm{IO}_{3}^{-}: 3 \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6} / 1: 3$ mole ratio;
$\left(1.44 \times 10^{-5} \mathrm{~mol} \times 3=4.32 \times 10^{-5}(\mathrm{~mol})\right.$;
Award [2] for the correct final answer.
Award [1 max] for " 4.80×10^{-6} (mol)" obtained from reversed ratio, 3:1.
(e) $\quad\left(4.32 \times 10^{-5} \times 176.14=\right) 7.61 \times 10^{-3}(\mathrm{~g})$;

Accept $M_{r}=176$ and mass $=7.60 \times 10^{-3}(\mathrm{~g})$.
(f) \quad gradient $=-\frac{E_{\mathrm{a}}}{R} /-1233(\mathrm{~K})$;

Accept value from -1200 to -1260 (K).

$$
E_{\mathrm{a}}=(1233 \times 8.31=) 1.02 \times 10^{4} \mathrm{Jmol}^{-1} / 10.2 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

correct E_{a} value;
correct units;
Allow value in range $9.97-10.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Answer must be given to three significant figures.
Award [3] for correct final answer and units.
Accept J or $k J$ instead of $\mathrm{J} \mathrm{mol}^{-1}$ or $\mathrm{kJ} \mathrm{mol}^{-1}$.
2. (a) (Cu) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10} / 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$;

Do not accept [Ar] 4s ${ }^{1} 3 d^{10}$.
$\left(\mathrm{Cu}^{2+}\right) 1 \mathrm{~s}^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$;
Do not accept [Ar] 3d ${ }^{9}$.
(b) $\left(\mathrm{NH}_{3}\right)$ Lewis base and $\left(\mathrm{Cu}^{2+}\right)$ Lewis acid;
$\mathrm{NH}_{3} /$ ligand donates an electron pair (to Cu^{2+}) / Cu^{2+} accepts an electron pair (from NH_{3});
forming coordinate/dative (covalent) bond;
Accept coordination bond.
Do not accept just covalent bond.
(c) d orbitals are split (into two sets of different energies);
(frequency/wavelength of visible) light absorbed by electrons moving between d levels/orbitals;
colour due to remaining frequencies/complementary colour transmitted;
Cu^{2+} has unpaired electrons/partially filled d sub-level / Zn^{2+} has filled d sub-level;
Accept d-d transitions possible between orbitals for M2.
3. (a) $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$;

Ignore state symbols.
(b) bonds broken: 2(C-C)/694 + 8(C-H)/3304 + 5(O=O)/2490 / $6488(\mathrm{~kJ}) ;$
bonds made: $6(\mathrm{C}=\mathrm{O}) / 4476+8(\mathrm{O}-\mathrm{H}) / 3712 / 8188(\mathrm{~kJ})$;
(6488-8188 =) - $1700\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$;
Ignore signs in M1 and M2.
Award [3] for the correct final answer.
Award [2] for $+1700\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$.
Accept values from 2016 data booklet to give 6494 (kJ) for M1, 8528 (kJ) for M2, and -2034 (kJ) for M3.
4. (a) $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$;

Accept $\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$ but not $\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{HOOC}$ or $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{HOOC}$.
$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$;
Accept $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$ but not $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{H}_{2} \mathrm{~N}$ or $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{H}_{2} \mathrm{~N}$.
Accept full or condensed structural formulas.
(b) Type: condensation (polymerization);

Structural feature: two functional groups on each monomer;
(c)

Accept-CONH—;
Accept this group if correctly identified as part of polymer chain.
water/ $\mathrm{H}_{2} \mathrm{O}$;
5. (a) (i) ability of an atom to attract (a pair of) electrons in a covalent bond/molecule / ability of an atom to attract a shared pair of electrons; Do not accept element/nucleus instead of atom.
(ii) do not form bonds/compounds / do not share electrons / have (full/stable) octet / have full/stable outer shell;
Accept (chemically) inert / do not react / stable electron arrangements/ configurations.
(b) ($\mathrm{Li} \rightarrow \mathrm{Cs}$) atomic/ionic radius increases;
force of attraction between metal ions and delocalized electrons decreases;
Accept metallic bonding gets weaker.
($F \rightarrow I$) London/dispersion/instantaneous induced dipole-induced dipole forces increase;
Accept vdW/van der Waals' forces for London/dispersion forces.
with increasing number of electrons/molar mass/surface area/size of electron cloud;
Do not accept "with increasing size" or "with increasing mass" only.
(c) Na^{+}has one less energy level/shell compared to Na atom / Na^{+}has 2 energy levels/shells compared to 3 in Na atom;
(compared to Na atom) effective nuclear charge greater in Na^{+}(so valence electrons attracted more strongly to nucleus) / (compared to Na atom) more protons than electrons in Na^{+}(so valence electrons attracted more strongly to nucleus);

Section B

6. (a) possible to get iron and $3: 1$ ratio of the two equations;

The ratio may be shown in combining the equations/calculating overall $\Delta G /-29(\mathrm{~kJ})$.
possible to get iron and resultant $\Delta \mathrm{G}$ is negative/-29 (kJ);
"Possible to get iron" needs only to be stated once.
Do not accept "possible to get iron" without any reason.
Do not accept "it is not possible to get iron because ΔG is positive".
(b) (i) $\Delta G^{\ominus}=[-1582+2 \times 10]-[-742]$;
$\Delta G^{\ominus}=-820\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$;
Award [2] for the correct final answer.
(ii) $\quad\left(\Delta S^{\ominus}=[50.9+2(34.8)]-[87.5+2(28.3)]\right)=-23.6\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$;
(iii) $\quad \Delta G^{\ominus}=[-825.2-(298 \times(-0.0236))]$;
$\Delta G^{\ominus}=-818\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) /-8.18 \times 10^{5}\left(\mathrm{~J} \mathrm{~mol}^{-1}\right)$;
Award [2] for the correct final answer.
Award [0] if b(i) is repeated here.
(c) (i)

	$\mathrm{NF}_{4}{ }^{+}$	$\mathrm{N}_{2} \mathrm{H}_{2}$	$\mathrm{~N}_{2} \mathrm{H}_{4}$
Hybridization	$\mathrm{sp}^{3} ;$	$\mathrm{sp}^{2} ;$	$\mathrm{sp}^{3} ;$

Do not penalize if it is not superscript.
(ii) sigma bond: overlapping of orbitals end to end/head on / overlapping of orbitals along internuclear axis;
Accept "axial overlapping of orbitals".
pi bond: side-ways/parallel overlapping of p orbitals (above and below internuclear axis);
Accept "overlapping of p orbitals above and below the internuclear axis". Accept suitable labelled diagrams.
(iii)

See saw;

Octahedral;
Accept any combination of lines, dots or crosses to represent electron pairs.
Penalize missing lone pairs on fluorine atoms once only. For SF_{4}, lone pair on S required for the mark.
Do not allow ECF for a wrong Lewis structure.
Accept saw horse/distorted tetrahedron instead of see-saw.
(d) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{CHO}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{COOH}$;;

Award [2] for correct order.
Award [1] for $\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}>\mathrm{CH}_{3} \mathrm{CHO}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ as compounds are not listed in order of increasing boiling point. Award [1] if one error in the order.
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ /London/dispersion/instantaneous induced dipole-induced dipole forces
$\mathrm{CH}_{3} \mathrm{CHO}$ dipole-dipole forces (and London/dispersion forces)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \mathrm{H}$-bonding (and dipole-dipole and London/dispersion forces)
$\mathrm{CH}_{3} \mathrm{COOH} \mathrm{H}$-bonding (and dipole-dipole and London/dispersion forces);;
Award [2] for all four correct.
Award [1] for two or three correct.
H-bonding strongest / London/dispersion forces weakest / dipole-dipole stronger than London/dispersion / dipole-dipole weaker than H-bonding;

Accept van der Waals' forces for London/dispersion forces.
$\mathrm{CH}_{3} \mathrm{COOH}$ forms more/stronger H -bonds than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{CH}_{3} \mathrm{COOH}$ is more polar than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$;
Accept $\mathrm{CH}_{3} \mathrm{COOH}$ has more electrons/higher molar mass than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$.
(e) ionization and (bombardment) by high energy/fast moving electrons/electron gun (to form positive ions);
acceleration and passing through electric field/potential difference/oppositely charged plates;
deflection and passing through magnetic field/electromagnet;
Award [1] for naming 3 processes (ionization, acceleration, deflection) in the correct order with incorrect details.
7. (a) (i) Increasing the pressure, at constant temperature:
decreases;
more (gas) molecules/moles on the right / fewer (gas) molecules/moles on the left;

Increasing the temperature, at constant pressure:
increases;
(forward) reaction is endothermic;
(ii) equilibrium reached faster;
no change in the concentration of reactants/products/yield (at equilibrium) /
position of equilibrium is not affected;
rates of forward and reverse reactions increase (equally);
reduces activation energy;
no change in Kc;
(iii) $\quad\left(K_{c}=\right) \frac{\left[\mathrm{H}_{2}\right]^{3}[\mathrm{CO}]}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$;
(iv) (increasing) temperature and (K_{c}) increases;

Award [0] if both temperature and pressure stated.
(b) $\quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
$(1.00-x)(1.00-x) \quad x \quad x$
$K_{c}=10.0=\frac{x^{2}}{(1.00-x)^{2}} / \sqrt{10.0}=\frac{x}{(1.00-x)}$;
$x=0.760 /(1.00-x)=0.240$;
$[\mathrm{CO}]=0.240\left(\mathrm{moldm}^{-3}\right)$ and $\left[\mathrm{H}_{2} \mathrm{O}\right]=0.240\left(\mathrm{moldm}^{-3}\right)$ and $\left[\mathrm{H}_{2}\right]=0.760\left(\mathrm{moldm}^{-3}\right)$
and $\left[\mathrm{CO}_{2}\right]=0.760\left(\mathrm{moldm}^{-3}\right)$;
(c) (i) Order with respect to O_{2} : first (order);

Order with respect to NO: second (order);
(ii) (rate $=$) $k\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.$;
(iii) 172.6/173;
$\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$;
Accept $M^{-2} s^{-1} / \mathrm{mol}^{-2} L^{2} s^{-1}$.
(iv) $\mathrm{NO}+\mathrm{NO} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2}$ (fast);
$\mathrm{N}_{2} \mathrm{O}_{2}$) $\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ (slow);
second step is rate determining step;
OR
$\mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons \mathrm{O}+\mathrm{NO}_{2}$ (fast);
$\mathrm{O}+\mathrm{NO} \rightarrow \mathrm{NO}_{2}$ (slow);
second step is rate determining step;

OR

$\mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons \mathrm{NO}_{3}$ (fast);
$\mathrm{NO}_{3}+\mathrm{NO} \rightarrow 2 \mathrm{NO}_{2}$ (slow);
second step is rate determining step;
Accept single arrow instead of reversible sign.
Accept fast/slow next to the equations.
Do not accept the following mechanisms:
$\mathrm{NO}+\mathrm{NO} \rightleftharpoons \mathrm{NO}_{2}+\mathrm{N}$ (fast)
$\mathrm{N}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}$ (slow)
OR

$$
\begin{aligned}
& \mathrm{NO}+\mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4} \text { (slow) } \\
& \mathrm{N}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{NO}_{2} \text { (fast) }
\end{aligned}
$$

(d) (i) $\mathrm{Pb}<\mathrm{Ni}<\mathrm{Fe}<\mathrm{Zn}$;;

Award [2] for the correct order.
Award [1] for $\mathrm{Zn}>\mathrm{Fe}>\mathrm{Ni}>\mathrm{Pb}$ as metals not listed in order of increasing reactivity.
Award [1] if one error in the order.
(ii) $\mathrm{Pb}^{2+} /$ lead(II) (ions);

Do not accept Pb/lead.
(e) Dilute sodium chloride:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} / 2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} ;
$$

Concentrated sodium chloride:
$\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e}^{-}$;
Award [1 max] if equations are given the wrong way round.
Accept e instead of e^{-}.
Ignore state symbols and equilibrium sign.
Accept correct half-equations balanced with different coefficients.
8. (a) (i) base I: 7.0;
base II: 5.5;
(ii) base I: strong base and base II: weak base;
(iii) NaOH and KOH ;

Accept LiOH.
(iv) (from the graph: initial $\mathrm{pH}=11, \mathrm{pOH}=3)\left[\mathrm{OH}^{-}\right]=10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$;
$K_{b}=\frac{10^{-3} \times 10^{-3}}{0.100-x} / \frac{10^{-3} \times 10^{-3}}{0.100}$;
$K_{\mathrm{b}}=1.0 \times 10^{-5}$;
OR
at half-equivalence point, $\mathrm{pH}=9.0=\mathrm{pK}$ for base II;
$p K_{\mathrm{b}}=14.0-9.0=5.0$;
Award M1 and M2 for stating: "at half-equivalence point $p O H=5=p K_{b}$ for base II".
$K_{\mathrm{b}}=1.0 \times 10^{-5}$;
Accept other valid methods of working.
Accept a slightly different value of pK_{b} and so K_{b} if the student uses the pH at the end point, rather than the initial or half-neutralisation values.
(v) methyl red;

Do not accept bromocresol green (since from table 16 data booklet pH range, 3.8 is too low).
(b) (i) resists change in pH ;
on addition of small amounts of acid and base;
(ii) (after mixing) $\left[\mathrm{NH}_{3}\right]=\left[\mathrm{NH}_{4}^{+}\right] / n \mathrm{NH}_{3}=n \mathrm{NH}_{4}^{+} / n=4.00 \times 10^{-3} \mathrm{~mol}$;
$\left[\mathrm{OH}^{-}\right]=K_{\mathrm{b}} \frac{[\text { base }]}{[\text { salt }]} / \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}=4.75$;
$\mathrm{pH}=9.25$;
Award [1 max] if no working shown.
Accept other valid methods of working.
(c) (i) Reaction A: base and accepts a proton/ H^{+};

Accept donates a pair of electrons.
Reaction B : acid and donates a proton $/ \mathrm{H}^{+}$;
Award [1] if acid and base identified correctly without a reason.
(ii)

	Acid		Base
Conjugate acid-base pair 1/2	$\mathrm{H}_{2} \mathrm{CO}_{3}$	and	$\mathrm{HCO}_{3}{ }^{-} ;$
Conjugate acid-base pair 2/1	HCO^{-}	and	$\mathrm{CO}_{3}{ }^{-} ;$
Conjugate acid-base pair $1 / 2$	$\mathrm{H}_{3} \mathrm{O}^{+}$	and	$\mathrm{H}_{2} \mathrm{O} ;$

(d) (i) strong acid: (assumed to be) completely/100\% dissociated/ionized and weak acid: partially dissociated/ionized;
(ii) Similarity: bubbling/effervescence/gas / heat/increase in temperature / solid dissolves;
Difference: strong acid more vigorous / faster reaction / greater temperature increase;
Accept converse statements for weak acid.
(iii) $10^{4}(: 1) / 10^{-1}: 10^{-5} / 1: 10^{-4}$;

Do not accept inverse ratio, $1: 10^{4}$.
(e) (i) Na and Mg : basic

Al: amphoteric
Do not accept amphiprotic.
Si to Cl: acidic
Ar: no oxide ;;
Award [2] for three or four correct, award [1] for two correct.
Award [1] for stating oxides become more acidic towards the right/chlorine or more basic towards the left/sodium.
Do not penalize incorrect formulas of oxides.
(ii) $\quad \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq}) / \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$;

Accept a correct equation with any acid or acidic oxide.
$\mathrm{SO}_{3}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) / \mathrm{SO}_{3}(\mathrm{l})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ;$
Accept a correct equation with any metal hydroxide, metal oxide, metal carbonate or metal hydrogen carbonate.
Do not accept equation with SO_{2}.
Ignore state symbols.
Accept ionic equations for M1 and/or M2.
9. (a) (i) $\mathrm{RBr}(\mathrm{l})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{ROH}(\mathrm{aq})+\mathrm{NaBr}(\mathrm{aq}) /$
$\mathrm{RBr}(\mathrm{l})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ROH}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) ;$
Ignore state symbols.
(ii) $\quad\left(1.35 \times 10^{-2}-7.36 \times 10^{-3}=\right) 6.14 \times 10^{-3} / 6.1 \times 10^{-3}(\mathrm{~mol})$;
(iii) $\quad\left(\right.$ molar mass $\left.=\frac{0.842}{6.14 \times 10^{-3}}=\right) 137\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$;

Accept 138.
(iv) (137-80 $=57$ which corresponds to $\mathrm{C}_{4} \mathrm{H}_{9}$, hence molecular formula)
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$;
Accept correct structural formula of one of the isomers as molecular formula.
Do not accept ECF from 9a(iii) for an impossible molecular formula, such as $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{Br}$.
(v) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ and primary; $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Br}$ and primary; $\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3}$ and secondary; $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ and tertiary; If primary, secondary or tertiary not stated, award [3] for four correct, [2] for three correct and [1] for two correct structural formulas.
Penalize missing hydrogens once only.
Accept either full or condensed structural formulas.
If $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}$ was used, accept any correct structural formulas.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ and primary;
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ and primary;
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}$ and primary;
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{Br}$ and primary;
$\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and secondary;
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3}$ and secondary;
$\mathrm{CH}_{3} \mathrm{CHBrCH}\left(\mathrm{CH}_{3}\right)_{2}$ and secondary;
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Br}$ and tertiary;
If primary, secondary or tertiary not stated, award [3] for four correct, [2] for three correct and [1] for two correct structural formulas.
Penalize missing hydrogens once only.
Accept either full or condensed structural formulas.
(b) (i) increase in carbon chain;
(ii)

OR

curly arrow going from lone pair/negative charge on NC^{-}to C ;
curly arrow showing Br leaving;
Accept curly arrow either going from bond between C and Br to Br in 1-bromobutane/1-bromo-2-methylpropane or in the transition state.
representation of transition state showing negative charge, square brackets and partial bonds;
Do not penalize if $N C$ and Br are not at 180° to each other.
Products: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CN}$ and $\mathrm{Br}^{-} / \mathrm{KBr}$;
Penalize missing hydrogens and/or incorrect bond linkages (eg CN-C instead of NC-C) only once in this question.
Remember to apply ECF from part (a)(v).
(iii)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
OR
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CN}+2 \mathrm{H}_{2} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$;
Ni / Co / Ru;
Accept Pt/Pd/Cu/Rh.
Accept either chemical symbol or name.
(c) (i)

OR

curly arrow going from lone pair/negative charge on O in OH^{-}to H on C ;
Do not allow curly arrow originating on H in OH^{-}.
curly arrow going from CH bond to form $\mathrm{C}=\mathrm{C}$ bond;
curly arrow showing Br leaving;
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}^{-} / \mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}^{-}$;
Accept NaBr for Br^{-}.
Remember to apply ECF from part (a)(v).
Do not penalize if mechanism shown with a secondary bromoalkane.
Do not penalize incorrect side-chain.
Penalize missing hydrogens only once in this question.
(ii) addition;
$-\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)-\mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)-\mathrm{CH}_{2}-/-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{2}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{2}-$;
Continuation bonds required for the mark.
(d) Initiation:
$\mathrm{Cl}_{2} \xrightarrow{\text { UV/hflhv/heat }} 2 \mathrm{Cl} \cdot$;
Reference to UV light or high temperatures must be included.
Propagation:
$\mathrm{Cl} \cdot+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \bullet+\mathrm{HCl}$;
$\mathrm{C}_{2} \mathrm{H}_{5} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{Cl} \cdot$;
Termination:
$\mathrm{Cl} \cdot+\mathrm{Cl} \cdot \rightarrow \mathrm{Cl}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \bullet+\mathrm{Cl} \bullet \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}^{2} \mathrm{C}_{2} \mathrm{H}_{5} \cdot+\mathrm{C}_{2} \mathrm{H}_{5} \bullet \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}$;
Accept representation of radical without • (eg, Cl, $\mathrm{C}_{2} \mathrm{H}_{5}$) if consistent throughout mechanism.
Accept further chlorination.
Award [3 max] if initiation, propagation and termination are not stated or are incorrectly labelled for equations.
Accept correct description of processes without equations.
Award [3 max] if Br used correctly instead of Cl .

